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Abstract

The properties of point defects, including stable configurations, formation and migration energies, and migration
mechanisms, in the ZrNi and Zr,Ni intermetallic compounds were simulated using molecular dynamics and statics, in
conjunction with interatomic potentials derived from the Embedded Atom Method. We describe a method to calculate
the formation energy of point defects from the program and apply the method to ZrNi and Zr,Ni. The results showed
that vacancies are most stable in the Ni sublattice, with formation energy of 0.83 and 0.61 eV in ZrNi and Zr,Ni,
respectively. Zr vacancies are unstable in both compounds; they spontaneously decay to pairs of Ni vacancy and antisite
defect. The interstitial configurations and formation energies were also calculated, with similar behaviors. In ZrNi,
vacancy migration occurs preferentially in the [02 5] and [1 0 0] directions, with migration energy of 0.67 and 0.73 eV,
respectively, and is essentially a two-dimensional process, in the (00 1) plane. In Zr,Ni, vacancy migration is one-di-
mensional, occurring in the [0 0 1] direction, with a migration energy of 0.67 eV. In both compounds, the presence of Ni
antisite defects decreases the Ni vacancy migration energy by up to a factor-of-three, and facilitates three-dimensional
motion. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction ordered intermetallics. The aim of the present
work is to acquire such knowledge via atomistic

To understand the irradiation response of ZrNi simulations. It is also hoped that these computer

and Zr,Ni and their propensity to undergo phase
transformations such as chemical disordering and
amorphization, it is necessary to have a good
knowledge of the properties of point defects in
these compounds [1]. Unfortunately, information
about point defects is extremely limited for most
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simulation results would provide guidance to ex-
perimental investigations of atomic defects in the
compounds, since it is difficult to experimentally
distinguish the defects one from the other among
the many possible point defect types.

In this study, we performed computer simula-
tions to obtain information about the properties of
vacancies and interstitials in the intermetallic
compounds ZrNi and Zr,Ni for which realistic
interatomic potentials are available. This infor-
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mation includes their stable configurations, ener-
getics, and migration mechanisms. The radiation-
induced amorphization behavior of these com-
pounds has systematically been investigated, both
experimentally and theoretically [2-4].

2. Computational procedure

The computational methods used in the present
simulations were molecular statics and molecular
dynamics at constant pressure. The simulation
cells for ZrNi (orthorhombic, oCS8, (-BCr-type
structure) and Zr,Ni (body center, tl12, Al,Cu-
type structure) contained 1568 and 1500 atoms,
respectively, and were subjected to periodic
boundary conditions. The interactions between
atoms in the compounds were governed by the
potentials which were derived from the Embedded
Atom Method (EAM) [5,6] and used in previous
studies of defect-induced amorphization [3,4].

The perfect lattice was first equilibrated for
10,000 time steps (25 ps) using molecular dynamics
(using a time step of 2.5 x 10713 s). Then, a va-
cancy or interstitial was created in a given sub-
lattice near the center of the simulation cell using
standard procedures. In the vacancy case, the most
stable vacancy configuration could be found sim-
ply by relaxing the defective lattice dynamically for
another 10,000 time steps. The potential energy of
the system was then obtained by a local energy
minimization using the Fletcher-Powell scheme,
which was proven to be quite efficient [7]. The
search for the lowest interstitial energy configura-
tion was, however, carried out by means of simu-
lated annealing [8]: the system was first heated to
800 K for a few hundred time steps, then energy-
minimized with the Fletcher—Powell method, and
the process was repeated at lower and lower tem-
peratures, down to the desired temperature. For
each type of defect, we conducted three runs and
took the average value of the energy differences
(the variation was less than 0.2%).

For pure elements, given the energies of the
perfect lattice and of the lattice containing the
defect, the defect formation energy can be readily
calculated. In ordered compounds, the formation
energies of a Frenkel pair and an antisite pair can

be determined in a similar way. However, the
calculation of the formation energy of a vacancy
or interstitial alone is more complex because the
perfect lattice and the lattice with the defect have
different chemical compositions [9-11]. We discuss
this problem in the following section.

2.1. Calculation of point-defect formation energies

In ordered compounds, the formation of a
Frenkel pair (i.e., an atom is removed from a
substitutional site and inserted back into a random
interstitial site in the lattice) or of an antisite defect
pair (i.e., lattice sites of a random pair of atoms of
different types are exchanged) does not lead to a
deviation from stoichiometry. However, the cre-
ation of a vacancy (permanently removing an
atom from its substitutional site) or an interstitial
(inserting an extra atom into the material) results
in a departure from stoichiometry, which must be
taken into consideration in the calculation of the
defect formation energies.

Let us consider an ordered compound A.B,.
The chemical potential of 4, u?, is defined as the
change in the Gibbs free energy, G, with respect to
the concentration of element A, »?, at constant
temperature, T, pressure, P, and molar fraction of
B, n®,

6G>

4

W= (29 1)
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Any change in the chemical composition will cause
a variation in the system total energy, relative to
the perfectly ordered state. This difference consists
of two contributions: the defect formation energy
and the change in the Gibbs free energy due to the
chemical potential.

In order to determine the effective defect for-
mation energy, Er, it is necessary to calculate the
defect concentration, n;, for defect j as a function
of temperature 7. E; is then given by the slope of
the Arrhenius plot [10,11],

d(In(n,)]

El = —k———=
=

(2)

where j stands for the type of defect (=1 for in-
terstitial or v for vacancy) and k& is Boltzmann’s
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constant. The defect formation energy may be
temperature-dependent; we assume that this effect
is weak and can be disregarded, i.e., the Arrhenius
plot is a straight line. The validity of this as-
sumption is verified later.

The concentration #; is obtained from the nu-
merical solution of a system of nonlinear equa-
tions proposed by Foiles and Daw [10] and
adapted here to take into account the presence of
interstitials and antisites. The total energy, U, of a
system of N* atomic sites is given by the perfect-
crystal energy, U,, plus the contributions from
different defects (assuming that their concentra-
tions are low enough so that the defects are non-
interacting),

O 2 H
+nlH o+ nlHE, (3)

where n? (1) is the concentration of defect j (=v,
1, a for vacancy, interstitial and antisite defect) on
the 4 sublattice (respectively B sublattice), and Hf
(H/B) is the energy difference between the perfect
crystal and the crystal containing a defect j on
sublattice A (respectively, B sublattice).

The introduction of defects into the perfect
crystal increases the configurational entropy which
is defined by [12]

e () (5) ()
wb(E) (3 () o

where m? = z/(z +y), m® =1 —m?. The equation
above is valid when the number of ways that one
can arrange the atom in a crystal containing n;
interstitials is equivalent to that in a crystal con-
taining n, vacancies. The ideal entropy function s
is defined by

s(x) = —[xInx+ (1 —x)In(1 —x)]. (5)
The total concentration of A-atoms, n?, is given by
n' = (m" —nl +nl —nl+nl), (6)

where r? is the concentration of vacancies in the 4
sublattice, n? is the number of 4 sites occupied by

B-atoms, n? is the number of B sites occupied by A-
atoms, and »{ is the number of 4 atoms occupying
interstitial positions.

The Grand-Canonical potential is given by

Q= U—kTS—MANA—,UBNB. (7)

Inserting Eqgs. (3) and (4) into Eq. (7) and mini-
mizing it with respect to each of the defect con-
centrations ! and n} (j = v, i, a), we arrive at the
corresponding expressions for the concentration of
each defect type:

4 exp [ — (H!+ ") /kT]

= m 1+exp [ — (H! + p*)/kT)’ ®
A — B exXp [_ (H + 1 — :“A)/kT] (9)
! L+exp [ — (H +pf — pt)/KT]’

nA _ mA eXp [_ (1—[1A - tuA)/kT} (10)

‘ Itexp [ — (H —p")/kT]

Egs. (6) and (8)—(10) have their respective coun-
terparts in the other sublattice written by ex-
changing 4 and B. The final set of 10 equations to
be solved consists of Egs. (3), (4), (6) and (8)—(10)
and the counterparts of Egs. (6) and (8)-(10), for
the B sublattice. This set of equations is solved for
the variables n, n, nt, n®, n?, nf, N4, N®, u* and
uZ, with the temperature as a parameter.

2.2. Calculation of vacancy migration energy

The vacancy migration energies were calculated
by minimizing the system energy with the jumping
atom constrained at various points along the jump
path. This procedure consists basically of taking
an atom and pushing it into the neighboring va-
cant site. This move was done in a series of small
steps. With a reaction coordinate 5 defined, the
point r(n) along the jump path was specified by

r(n) = ri+nlr — . (11)

At r(n), the “migrating” atom was confined to the
plane normal to (r, —r;) while the surrounding
atoms were allowed to relax [7,11]. The mapping
of the energy barrier for migration, E(#), was then
obtained by repeating the calculation for different
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values of 5, and the highest saddle-point energy
(i.e., the maximum value of E(#) for # in the range
[-1,1]) was taken to be the vacancy migration
energy, E. All calculations were carried out for
zero temperature.

3. Results and discussion
3.1. Defect formation energies

In both compounds, the vacancy was found to
be most stable in the Ni sublattice. Zr vacancies
were highly unstable; if a Zr atom was removed
from the Zr sublattice to form a Zr vacancy [v(Zr)]
a neighboring Ni atom jumped right into the va-
cancy, giving rise to an Ni vacancy [v(Ni)] and a
Zr-antisite defect [Zr(Ni)]. Similarly, Ni intersti-
tials [i(Ni)] were much more stable than their Zr
counterparts: the Zr interstitial [i(Zr)] also decayed
into an Ni interstitial [i(Ni)] plus a Zr-antisite de-

fect [Zr(Ni)]. The most stable configurations for
the interstitial in Zr,Ni and ZrNi are shown in Fig.
1. In Zr,Ni, the stable i(Ni) lies on the (00 1) plane,
in between the nearest out-of-plane Zr atoms,
above and below (labeled “1”” and “2”). In ZrNi,
the stable i(Ni) is also in the same configuration,
i.e. it lies on the (001) plane, with a nearest Zr
atom above and below it. For the sake of clarity,
atomic distortions around the extra atoms are not
shown in the figures.

The temperature-dependent concentrations of
vacancies and interstitials were determined from
the set of 10 equations described in Section 2.1,
using the values of H} = U} — Uy (the energy dif-
ference between the crystal containing a defect j on
sublattice £ and the perfect crystal) given in Table
1. Figs. 2 and 3 show the Arrhenius plots of these
concentrations for Zr,Ni and ZrNi, respectively.
We note that the assumption made in Section 2.1
that the formation energy be independent of tem-
perature is confirmed by the constant slopes of the

Fig. 1. Interstitial configuration in Zr,Ni (left) and ZrNi (right). The atom size varies with distance from the front plane.

Table 1

Energy difference H (in eV) between the perfect crystal and the crystal containing the defect of j-type in the k-sublattice

Zr,Ni ZrNi

Defect type k Jj Uf Hf Uy HY

Perfect crystal - 0 —8836.5481 0 —8884.3336 0

v(Ni) Ni v —8830.7138 5.8343 —8878.5302 5.8034
v(Zr) Zr v —8828.8811 7.6670 —8875.9752 8.3584
i(Ni) Ni i —8839.6712 -3.1231 —8887.6350 -3.3014
i(Zr) Zr i —8839.7573 —-3.2092 —8887.9436 -3.6100
Ni(Zr) Zr a —8834.9491 1.5990 —8882.1148 2.2188
Zr(Ni) Ni a —8836.0142 0.5339 —8884.3391 —0.0055
Ni(Zr) + Zr(Ni) Ni,Zr a —8834.3775 2.1706 —8882.2001 2.1335
v(Ni) +i(Ni) Ni Fr —8833.8369 2.7112 —8881.8313 2.5023
v(Zr) +i(Zr) Zr Fr —8832.0903 4.4578 —8879.6059 4.7277
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Fig. 2. Arrhenius plots of the concentrations of vacancies and interstitials in Zr,Ni.
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Fig. 3. Arrhenius plots of the concentrations of vacancies and interstitials in ZrNi.

curves. The formation energies for these defects,
calculated from the slopes of the corresponding
plots, are summarized in Table 2. Since almost all
vacancies are in the Ni sublattice, the effective
vacancy formation energies are 0.61 and 0.83 ¢V in
the respective compounds. Adapting Hausleitner—

Table 2
Effective formation energies (eV)

Defect type Zr,Ni ZrNi
v(Ni) 0.61 0.83

v(Zr) 1.45 1.99

i(Ni) 2.11 1.67

i(Zr) 3.01 2.75
Ni(Zr) 0.61 0.84
Zr(Ni) 1.53 1.38
Ni(Zr) + Zr(Ni) 2.14 (2.17) 2.22 (2.18)
v(Ni) +i(Ni) 2.74 (2.75) 2.50 (2.59)
v(Zr) +i(Zr) 4.48 4.73

Hafner interatomic potentials to the ZrNi com-
pound, Teichler [13] calculated the formation en-
ergy of v(Ni) and v(Zr) to be 1.51 and 3.38 eV,
respectively. The effect of deviation from stoichi-
ometry was, however, not taken into consideration
in these calculations, and the results are clearly
much higher than ours. At present, there are no
experimental data for comparison with these cal-
culated results; however, it is noted that the in-
teratomic potentials used by Teichler predict a
melting temperature that is ~400 K higher than
the experimental measurement, whereas the po-
tentials used in the present work underestimate it
by ~150 K. Also, for the sake of comparison, it is
pointed out that the vacancy formation energy in
pure Ni was calculated to be ~1.5 eV [14-16] and
experimentally measured to be 1.60-1.80 eV
[17,18], while the value measured for pure Zr is
1.75 eV [19]. Likewise, the effective interstitial
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formation energies are 2.11 and 1.67 eV in Zr,Ni
and ZrNi, respectively. These values represent
roughly half the interstitial formation energy cal-
culated for pure Ni, 4.08 eV [14] or 4.16 eV [15].
The formation energies of antisite defects [Ni(Zr)
and Zr(Ni), for Ni occupying Zr site and vice-
versa] were also determined in the same manner
and their values are also given in Table 2. In both
compounds, it is significantly easier to form an Ni-
antisite defect, Ni(Zr), than a Zr-antisite defect,
Zr(Ni). The formation of antisite pairs
[Ni(Zr) 4+ Zr(Ni)] and Frenkel pairs [v(Ni) 4 i(Ni)
or v(Zr) 4+ i(Zr)] does not change the stoichiome-
try of the system. Therefore, their formation en-
ergies were calculated by taking the differences in
the total potential energy before and after the de-
fect creation, and are also tabulated in Table 2. As
expected, the Frenkel pair formation energy mat-
ches perfectly the sum of the interstitial and va-
cancy formation energies. The same happens for
the antisite pairs: their formation energy is equal
to the sum of the formation energies of the two
individual antisite defects. The values in paren-
theses were reported earlier by Devanathan et al.
[3,4], using the same interatomic potentials. Em-
ploying different potentials, Teichler [13] found
2.24, 3.59, and 2.47 and 7.51 €V for the formation
energy of Ni(Zr), Zr(Ni), and [v(Ni) + i(Ni)] and
[v(Zr) +1(Zr)] in ZrNi, respectively.

3.2. Vacancy migration mechanisms and energies

Since the stable interstitial configurations are
relatively complex, a systematic investigation of
interstitial migration has not been undertaken as
yet. In the following, we report only the results of
our vacancy migration simulations. Moreover,
since Zr vacancies are highly unstable and almost
all the vacancies are in the Ni sublattice, only the
migration of Ni vacancies to neighboring Ni atoms
is discussed.

Typical plots of the energy barrier, E(#), along
the migration path, i.e., # = —1 to 1, are shown in
Figs. 4 and 5. These are for the jump of an Ni
vacancy towards a Ni atom in the [00 1] and [100]
direction in Zr,Ni and ZrNi, respectively. The
ground state at n = —1 and 5 =1 is simply the
minimum total potential energy when the vacancy

energy barrier (eV)

Fig. 4. (a) Crystal structure of Zr,Ni and (b) energy barrier for
the migration of an Ni atom toward a vacancy in the [001]
direction.
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Fig. 5. (a) Crystal structure of ZrNi and (b) energy barrier for
the migration of an Ni atom toward a vacancy in the [100]
direction.

(or jumping atom) is at its stable lattice rest posi-
tion. The maximum value of E(y) defines the
saddle-point energy, which is the energy that the
vacancy must acquire in order to jump to a
nearest-neighbor site.

Tables 3 and 4 summarize the vacancy
migration energies obtained for different jump
directions and jump distances in Zr,Ni and ZrNi,
respectively. In the former compound (Table 3),
the vacancy migrates easily by exchanging with
nearest-neighbor Ni atoms along the [001] di-
rection, with a migration energy of 0.67 eV. This
type of motion is thus one-dimensional and does
not involve any antisite defect formation. Direct
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Table 3
Vacancy migration in Zr,Ni

Direction Saddle-point energy Jump distance
(eV) A)
[001] 0.67 2.62
[110] 2.92 4.45
Ring 1.81 4.50
Table 4

Vacancy migration in ZrNi

Direction Saddle-point energy Jump distance
(eV) (A)

[025] 0.67 2.51

[100] 0.73 3.22

[134] 2.46 4.19

[001] 2.66 4.02

Ring ~2 4.18

vacancy jump to an Ni atom at second-neighbor
distance, in the [110] direction, is highly im-
probable, requiring an energy of 2.92 eV. How-
ever, indirect jumps, i.e., via a ring mechanism,
are only slightly less improbable; the migration
energy for the complete sequence is 1.81 eV. This
indirect process involves transient formation of
antisite defects in the intermediate steps. In the
ZrNi case (Table 4), the energy for vacancy mi-
gration to a nearest-neighbor site (in the [02 5]
direction) is 0.67 eV, identical to that found for
Zr,Ni. The energies for direct vacancy jumps to
Ni sites at second-, third- and fourth-neighbor
distances (in the [100], [001] and [134] direc-
tions) are 0.73, 2.66 and 2.43 ¢V, respectively.
The difference in migration energy between the
[02 5] and [1 00] directions is small enough that it
is likely a significant portion of the jumps will
occur in the [100] direction thus making the
migration essentially two-dimensional. There are
thus two directions for easy vacancy jumps in this
compound, [025] and [100]. Therefore, vacancy
migration is essentially two-dimensional in fully-
ordered ZrNi. Indirect vacancy migration to the
third-neighbor site involves a ring mechanism,
and requires an energy of about 2 eV.

Chemical disorder can greatly decrease the va-
cancy migration energy and also change the an-
isotropy of migration. In fact, as shown in Figs. 6
and 7, the vacancy migration energy in both
compounds drops significantly if a few Ni antisite
defects are present in the nearest neighbor Zr po-
sition. In Zr,Ni (Fig. 6), for example, the Ni va-
cancy migration energy in the [110] and [001]
directions decreases by a factor of three Ni anti-
sites are introduced into the Zr sublattice positions
that are nearest-neighbors to the migrating va-
cancy. Nearest-neighbor jumps become very fast,
with a migration energy of ~0.2 eV. The migration
energy for direct vacancy jumps to second-neigh-
bor Ni sites (in the [110] direction) is also de-
creased, requiring only ~0.9 eV. In ZrNi (Fig. 7),
on the other hand, four Ni antisite defects must be

33

. L Lo

] -
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T T
0 1 2 3 4

Saddle-point energy (eV)

Number of Ni antisites

Fig. 6. Saddle point energy for Ni vacancy migration in Zr,Ni
as a function of the number of Ni(Zr) defects placed nearest-
neighbor to the migrating vacancy. The top curve corresponds
to vacancy migration in the [1 10] direction while the bottom
curve corresponds to the vacancy migration in the [001] di-
rection.
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Fig. 7. Saddle-point energy for Ni vacancy migration in ZrNi as
a function of the number of different antisite defects placed in
nearest-neighbor positions to the migrating vacancy. The vari-
ous curves correspond to Ni vacancy migration in the [hk/]
directions when the indicated antisite defect is introduced
nearest-neighbor to the migrating vacancy.
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present near the vacancy in order to induce a
factor-of-three drop in the energy for vacancy
migration to a first-nearest-neighbor Ni site in the
[02 5] direction. Jumps in the [010] direction to-
ward second-nearest-neighbor sites are, however,
already much faster — with a factor-of-three
decrease in energy — even with only one antisite
defect in the close vicinity. The presence of Ni
antisite defects thus facilitates three-dimensional
motion of vacancies in both compounds.

4. Conclusions

In the present work, the properties of atomic
defects (i.e., stable configurations, formation and
migration energies, and migration mechanisms) in
the intermetallic compounds ZrNi and Zr,Ni have
been investigated using molecular-dynamics and
molecular-statics simulations. Vacancies are most
stable in the Ni sublattice, with formation energies
of 0.83 and 0.61 ¢V in ZrNi and Zr,Ni, respec-
tively. Zr vacancies are unstable in both com-
pounds, spontaneously decaying to pairs of Ni
vacancy and antisite defect. The Zr interstitials are
also unstable; they convert to Ni interstitials and
antisite defects. In fully-ordered ZrNi, vacancies
migrate rapidly in the [02 5] and [1 0 0] directions,
with migration energy of 0.67 and 0.73 eV, re-
spectively.

Vacancy migration is thus practically two-di-
mensional. In fully-ordered Zr,Ni, on the other
hand, the vacancy migration is one-dimensional,
taking place in the [00 1] direction, with a migra-
tion energy of 0.67 eV. In both compounds, the
presence of antisite defects decreases the vacancy
migration energy by up to a factor of three, and
facilitates three-dimensional motion.
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