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A B S T R A C T   

The shape and size of grains significantly impact the properties of polycrystalline materials. In particular, high 
temperature and radiation exposure in nuclear reactors can lead to considerable grain growth of UO2, thereby 
substantially modifying the fuel performance. Transmission electron microscopy (TEM) has been used to char
acterize the grain morphology of polycrystalline materials, but the manual analysis of TEM images is a time- 
consuming and labor-intensive process, which cannot meet the increasing demand for high-throughput data 
analytics. 

This study presents an automated approach we developed for characterizing grain morphology recorded in 
bright field TEM images during ion irradiations performed in situ. Our approach combines a machine learning 
model for detecting grain boundaries and a computer vision algorithm named CHAC for selecting well-labeled 
grains for statistical analysis. Using TEM images acquired from in-situ ion irradiation experiments on nano
crystalline UO2, we demonstrate that this automated approach can achieve comparable results to human experts 
while significantly reducing the analysis time. Moreover, the machine learning model functions as a "few-shot" 
model, requiring only a modest number of training images to perform effectively on a specific task. Conse
quently, researchers in need can efficiently train their own models following the procedures described in this 
study to automate grain morphology analysis of their own TEM images.   

1. Introduction 

It is widely acknowledged that properties of polycrystalline materials 
can be tailored by modifying the grain morphology [1]. Grain size en
gineering, which involves adjusting grain size without altering the 
chemical composition, has become an important approach for 
enhancing the mechanical, electrical, and optical properties of materials 
[2]. For example, the well-known Hall-Petch equation shows that yield 
strength increases with decreasing grain size due to the impeding effect 
of grain boundaries on dislocation movement [3]. Studies demonstrated 
that the charge carrier mobility would increase as the grain size of 
nanocrystalline indium tin oxide increases, since the number of trapping 
sites at grain boundaries is reduced during grain growth [4]. Research 
on nanocrystalline titanium oxide found that modifying grain sizes can 
change both the band gap and specific reaction area of this semi
conductor as a photocatalyst [5]. All these studies highlight the 

importance for efficient characterization of grain morphology across 
various materials. 

Grain size can significantly impact the performance of uranium di
oxide (UO2), which is the most-widely used nuclear fuel for the current 
fission reactor fleet [6,7] and a promising candidate fuel for some 
Generation IV reactors [8]. Due to the elevated operating temperature 
and intensive radiation, UO2 fuels go through significant grain growth 
during reactor operation, which can lead to substantial fuel performance 
change, affecting thermal conductivity, fission gas release, swelling, and 
creep [9,10]. Previous studies have applied in-situ ion irradiation in 
transmission electron microscopy (TEM) to investigate grain growth in 
UO2 and other materials, as this in-situ technique provides a unique 
opportunity to directly observe the kinetics of grain growth under 
well-controlled irradiation conditions [11–13]. Meanwhile, in-situ TEM 
experiments often result in a large number of images and even videos, 
making the data analysis time-consuming and potentially prone to 
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human error if the images and videos are analyzed manually. 
Applying machine learning in material science has significantly 

advanced the field as processing large datasets has become a common 
task for various modern material science research. From a material 
discovery point of view, machine learning has led to a new field of 
material informatics and resulted in the discovery of many new mate
rials [14]. From a material data analysis point of view, machine learning 
in many cases is irreplaceable due to the large number of datasets pro
duced in different imaging experiments using electron, neutron and 
X-ray [15,16]. Furthermore, the integration of computer vision, ma
chine learning, and deep learning techniques for microstructural char
acterization and analysis holds considerable significance [17,18]. 
Convolutional Neural Networks (CNNs) for machine learning have 
recently gained much attention from the microscopy community 
because of their excellent performance in image analysis tasks, such as 
face recognition and image classification [19]. CNNs are a type of neural 
network that utilizes shared-weight convolutional kernels scanning 
across the input image to efficiently produce feature maps with 
translation-invariant responses. Researchers have successfully applied 
CNNs to analyze various microstructural features. For instance, Roberts 
et al. utilized a CNN variant called DefectSegNet to identify precipitates 
and voids [20], while Li et al. applied a classical CNN to identify <100>
dislocation loops in scanning transmission electron microscopy (STEM) 
images of irradiated FeCrAl alloys [21]. More recently, an effective 
model was developed by incorporating a mature object-detection 
framework, Faster R-CNN, allowing for detecting different types of 
dislocation loops and black spots in STEM images [22]. Additionally, 
several different frameworks, including Mask R-CNN and Faster R-CNN, 
have been successfully applied to recognize voids and bubbles in TEM 
images [23–25]. 

A number of studies have focused on automating the identification of 
grain boundaries in micrographs, a task that essentially involves 
detecting object edges. The Canny algorithm is a classic edge detection 
method that recognizes pixels exhibiting sufficiently strong intensity 
gradients as edges. However, directly applying the Canny algorithm to 
micrographs of grain boundaries has yielded limited performance [26, 
27]. Campbell et al. proposed a set of processing techniques, including 
filtering, watershed transform, region merging, and phase separation, to 
automatically draw contours around grains in scanning electron mi
croscopy (SEM) and optical microscopy (OM) images [28]. In addition to 
the conventional computer vision techniques, machine learning has also 
been explored to analyze grain morphology. Using the CNN-based ho
listically nested edge detection algorithm and post-processing, Bordas 
et al. quantified the grain size distribution in SEM images [29]. Their 
results demonstrated superior recognition of grain boundaries compared 
to the Canny algorithm. Similarly, Ma et al. trained a CNN-based 
framework named DeepLab to separate grains in microscopic images 
of lanthanum aluminum alloys, which substantially outperformed the 
conventional image segmentation methods, such as watershed, 
K-Means, and Graph-Cut [30]. Despite these advancements, few studies 
have been dedicated to analyzing grain morphology in TEM images. 
Compared to SEM and OM, TEM has more complex imaging mecha
nisms, resulting in more dynamic changes in image contrast depending 
on the crystallographic orientation, thickness, and composition of each 
grain. Therefore, it is more challenging to identify grain boundaries in 
TEM images than in SEM or OM. Nevertheless, because of its high spatial 
resolution (< 1nm), TEM has become a critical tool in studying nano
materials. So far, most studies still rely on human experts to manually 
analyze TEM images. Automated TEM analysis of grain morphology can 
greatly expedite research by reducing manual labor, increasing consis
tency, and potentially revealing subtle patterns that might be missed by 
human eyes. 

In this work, we developed a machine learning model that can 
automatically detect grain boundaries of nanocrystalline UO2 in Bright 
Field (BF)-TEM images. The model utilized a unique CNN framework 
known as UNet [31]. Our results showed that the UNet model could 

achieve a good performance with a modest number of manually labeled 
TEM images as the training dataset, demonstrating the model’s potential 
of being quickly trained for analyzing different nanocrystalline mate
rials. It is important to note that achieving 100% accuracy with a ma
chine learning model remains elusive; consequently, the UNet model 
mislabeled some grain boundaries. To obtain a reliable statistical anal
ysis of grain size distribution, we designed a post-processing method 
that combined the Convex-Hull (CH) and Approximate Contour (AC) 
algorithms for selecting well-labeled grain contours by the machine 
learning model. We termed this method CHAC. By combining UNet with 
CHAC, we were able to automate the analysis of TEM images from in-situ 
irradiation of nanocrystalline UO2. The automated approach revealed 
the grain growth kinetics that matched very well with results from 
manual analyses, and significantly accelerated the data analysis process. 
In the end, limitations and future improvements of this automated 
method for grain morphology analysis are discussed. 

2. Methods 

2.1. Fabrication of nanocrystalline UO2 and in-situ irradiation 

Nanocrystalline UO2 thin films of electron transparent thickness 
were grown on an electron transparent silicon nitride membrane (from 
Norcada) using pulsed laser deposition (PLD) at the Center for Inte
grated Nanotechnologies, Los Alamos National Laboratory. The samples 
were prepared so that the grains were quite small to enhance the driving 
forces for grain growth and so that their size would be much smaller 
than the TEM sample thickness. The samples had an initial grain 
diameter of 10-15 nm. In-situ Kr ion irradiation was then performed to 
monitor the radiation-induced grain growth of UO2. The thin films of 
nanocrystalline UO2 were irradiated by 1 MeV Kr ions at a flux of 6.25 ×
1015 ions/m2/s to a maximum fluence of 7.1 × 1019 ions/m2 using the 
Intermediate Voltage Electron Microscopy (IVEM) facility at Argonne 
National Laboratory, where a linear ion accelerator with a 911 Danfysik 
ion source is coupled with a Hitachi 9000 TEM at 30◦ for simultaneous 
ion irradiation and electron imaging. The Stopping and Ranging of Ions 
in Matter (SRIM) was utilized to simulate the fraction of ions traversing 
the 50 nm thick film and implanting within it. The simulation, con
ducted in full cascade mode, involved 175,000 ions. At this energy level, 
the majority of Kr ions passed through the thin foil, with only a minimal 
fraction (0.48%) being implanted. To investigate the mechanisms for 
grain growth at different temperatures, the irradiation temperatures 
varied from 50 K to 1075 K [11]. BF-TEM images were acquired during 
the entire irradiation process. Fig. 1 shows typical BF-TEM images of 
nanocrystalline UO2 during the irradiation at room temperature (300K). 
It is clear that the average grain size increased significantly due to the 
irradiation. More than 200 BF TEM images in total were collected. More 
details related to sample fabrication and in-situ irradiation have been 
provided before [19,32,33]. 

2.2. Introduction to CNN, UNet, and model training 

Similar to conventional artificial neural networks, CNN consists of an 
input layer, multiple hidden layers, and an output layer. However, the 
unique convolution layers among the hidden layers render CNN 
particularly adept at handling sizable inputs, such as high-resolution 
images [34]. In conventional artificial neural networks, matrix multi
plications are used that would result in an exponential increase in time, 
computational resources, and learning complexity with the size of the 
input dataset, making it challenging to develop an effective neural 
network for high-resolution images. In contrast, the convolution layers 
in CNN use small kernels (e.g., 3 × 3 matrices) for the convolution, 
leaving the data size nearly unchanged between different layers. For 
image analysis, the convolutional layers can extract various features 
from the input image and generate the feature maps, which are 
three-dimensional tensors, and the depth of the tensor is often referred 
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to as channels of the feature map. The first convolutional layer may only 
identify basic features, such as edges and corners, but with successive 
convolutional layers, increasingly complex features like shapes can be 
extracted. Besides convolutional layers, the hidden layers in CNN also 

include non-linearity layers, pooling layers, and a fully-connected layer. 
The non-linearity layers, which often employ the Rectified Linear Unit 
(ReLU) [35] activation function, introduce nonlinearity to the neurons 
and enable the network to model non-linear relationships between 

Fig. 1. Examples of BF-TEM images of nanocrystalline UO2 irradiated to the different fluence of (a) 0 ions/m2, (b)5.04 × 1018 ions/m2, (c)1.51 ×1019 ions /m2 and 
(d) 3.02 × 1019 ions/m2 at room temperature. 

Fig. 2. Structure of UNet model in this work. Each blue or white-blue box represents a feature map. The number of channels in each feature map is shown on the top 
and the map dimensions are shown in the lower-left corner. 
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extracted features and the output. The pooling layer, typically located 
after the convolution layer, condenses the feature maps by summarizing 
the information within a smaller region (e.g., 2 × 2 window) to reduce 
the parameters and computational costs. Lastly, the fully-connected 
layer integrates all the local features extracted by the preceding layers 
into global features and mapping them to the appropriate output space. 

UNet is a CNN with an innovative U-shaped architecture, making it 
highly effective for tasks such as image segmentation and particle 
analysis [31]. As illustrated in Fig. 2, the model includes a contracting 
path that captures the content of images, such as colors, objects, and 
scenes, and a symmetrical expansive path that transfers this contextual 
information to higher-resolution layers. As indicated by the yellow ar
rows in Fig. 2, the concatenate operation combines the feature maps 
from both the contracting path and the expansive path. This operation 
integrates high-level contextual information with low-level spatial de
tails, enhancing the capability of UNet model to accurately recognize 
object boundaries. UNet has been widely used in segmentation of 
biomedical and microscopic images [31,36,37]. In particular, we have 
developed a customized UNet model to automatically recognize and 
measure UO2 grains in dark field TEM images [11]. 

In this work, we used ten 1024 × 1024 pixels BF-TEM images as the 
training dataset and another two BF-TEM images as the validation 
dataset for tuning hyperparameters of the UNet model. The performance 
of the trained model was evaluated on a separate test dataset containing 
four representative BF-TEM images. The training images were randomly 
selected from augmented through rotation, mirroring and zoom-in by 
eight times. In all the BF-TEM images, grain boundaries were annotated 
by human experts. It is worth noting that human experts often labeled 
the grain boundaries as one pixel-wide lines, the width of which was 
smaller than the size of the convolution kernels (3 × 3-pixel matrices), 
causing difficulties for the kernels to extract the labeled grain bound
aries. To address this issue, we first increased the width of labeled 
boundaries to five pixels for the model training and segmentation. After 
that, the grain boundary width was reduced to one pixel by keeping only 
the central pixels. The next step involves grain size measurement, we 
employed a well-established method called Equivalent Circle Diameter 
to measure grain diameters in this work [38,39]. Specifically, we used 
the diameter of an equivalent circle which has the same area as the grain 
to represent the grain diameter. The UNet model was trained on the 
Tensorflow platform using a single Tesla P-100 GPU. Binary 
cross-entropy loss function, which is commonly used by models for 
grayscale image segmentation, was chosen for training the model [40]. 
The training process was terminated when the decrease of validation 
loss plateaued, at which point the best model from the entire training 
phase was automatically saved. The training process lasted approxi
mately five hours. The network structure was optimized by adjusting the 
number and size of convolutional layers along with filters, the number of 
maxpooling layers, and the size of fully connected layers. Fig. 2 illus
trates the finely tuned UNet, which consists of one input layer, one 
output layer, four max-pooling layers, four concatenation layers, and 23 
convolutional layers. 

2.3. Convex grain assumption and CHAC method 

In the classic theory of grain growth, grain boundary movement is 
driven by the difference in curvature between adjacent grains. The 
curvature difference creates a pressure that results in unbalanced atom 
fluxes jumping across the boundary, causing the boundary to migrate 
towards the center of the boundary curvature, minimizing the boundary 
area, and thus reducing the total free energy [41]. As a result of grain 
boundary migration, it is expected that all grains will adopt a convex 
shape after adequate growth, leading to an equilibrium state where the 
curvature difference between touching grains becomes negligible. This 
process indicates that only convex grains should be considered 
well-grown for counting and measurement. 

Although the UNet model can reach a reasonably good performance 

for grain boundary identification, its accuracy is lower than 100%, as 
some grain boundaries are inevitably missed in the UNet-labelled re
sults. As illustrated in Fig. 3, the missing grain boundaries can cause 
unclosed grain contours and even the merging of two adjacent grains, 
resulting in concave contours. To get more accurate grain size mea
surements in BF-TEM images, it is necessary to develop an automated 
method that eliminates concave contours while selecting an adequate 
number of convex contours. The CHAC method was developed to ach
ieve this goal and is introduced in the following paragraphs. 

A number of computer vision algorithms exist for constructing 
convex hulls of objects in images. For example, Sklansky’s algorithm 
identifies the minimum convex polygon of a set of pixel points and 
returns its contours [42]. However, it is challenging to directly apply 
these convex hull algorithms to the grain boundary maps. Because of 
many concave contours as shown in Fig. 3, a large fraction of convex 
hulls constructed by Sklansky’s algorithm would differ significantly 
from the actual shape of grains, leading to obvious errors in grain size 
measurement. Therefore, it is necessary to pick up the convex contours 
first. Nevertheless, this is not an easy task because many grain bound
aries are labeled by human experts and the UNet model contains minor 
bends as illustrated in Fig. 4a–4d, which introduce a slight concavity to 
the convex contours. If these minor bends are not straightened, only a 
small fraction of convex contours with perfectly straight boundaries can 
be selected. For instance, among all the grains in Fig. 4a, only the small 
grain marked by the purple box was selected by the algorithm as shown 
in Fig. 4e, 4g. 

To address the above issue, we adopted the Douglas-Peucker algo
rithm to straighten the grain boundaries labeled by the UNet model [43, 
44]. This algorithm generates an approximated polygon that preserves 
the rough shape of the original polygon but contains fewer vertices. The 
degree of approximation is controlled by a single parameter, ε, which 
defines the maximum allowable distance between the original vertices 
of the polygon edge and the simplified edge. For example, setting ε to 
0.02 means that the maximum distance should be less than two percent 
of the circumference of the original polygons. In general, as ε increases, 
the similarity between the original polygon and the approximated 
polygon decreases but it is more likely to convert the polygon into a 
convex contour. Therefore, there is a trade-off between the accuracy of 
the polygon size and the number of convex contours that can be ob
tained. In this work, we applied ε = 0.02 to all images to obtain the 
approximated contours. 

The CHAC method is illustrated in Fig. 5. The computation process 
starts with the Approximate Contour module, including contour detec
tion, approximation of the contours into polygons, and selection of 
convex polygons. This module results in the straightening of the original 
contours and the generation of a sufficient number of perfect convex 
contours for statistical analysis. The Convex Hull module applies 
Sklansky’s algorithm to construct polygons and draw them on a white 
canvas. With these closed and convex grain contours, a watershed al
gorithm is applied to separate the grains for extracting grain informa
tion, such as mean and standard deviation of grain diameters. 

3. Results 

3.1. Performance of UNet for identifying grain boundaries 

The performance of UNet model for automated grain boundary 
detection is evaluated using four basic metrics, i.e., Accuracy, Precision, 
Recall, and F1 score. For calculating these metrics, we took the BF-TEM 
images labeled by human experts as the ground truth and defined the 
pixels on the grain boundaries as positive and all the other pixels as 
negative. As shown by the confusion matrix in Table 1 and Eq. (1), 
Accuracy measures the proportion of correctly predicted pixels among 
all pixels in the TEM image. Although Accuracy is commonly adopted for 
evaluating performance of machine learning models, it is not sufficient 
for our work due to the significant imbalance between the number of 
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positive (grain boundary) and negative (non-grain boundary) pixels. As 
shown in Fig. 6, the pixels on grain boundaries only account for a small 
fraction (~ 10% to 20%) in the TEM image. Therefore, even a very high 
Accuracy, e.g., >90%, does not guarantee that enough positive pixels 
are identified by the UNet model, since most of the correctly detected 
pixels could be negative. Therefore, the other three metrics are neces
sary for a comprehensive evaluation. As shown in Eqs. (2) and (3), 
Precision measures the fraction of positive pixels identified by UNet that 
are actually on grain boundaries; Recall measures the fraction of pixels 
on grain boundaries that are correctly captured by UNet. Precision and 
Recall are often conflicting performance quotas: the higher the Precision 
is, the lower the Recall tends to be [45]. Therefore, F1 score is employed 
to evaluate the overall performance. As shown in Eq. (4), either a low 
Precision (P) or Recall (R) could result in a low F1 score. 

Accuracy =
TP + TN

TP + TN + FN + FP
(1)  

Precision =
TP

TP + FP
(2)  

Recall =
TP

TP + FN
(3)  

F1 =
2PR

P + R
(4) 

Table 2 summarizes the evaluation metrics of our UNet model using 
four test images. All four matrices exceed 0.70. Furthermore, the F1 
score (0.74) is comparable to other CNN models developed for defecting 
different defects in BF-TEM images, such as black dots (0.68) [22], 

Fig. 3. An example of (a)a UNet-labeled grain map (black lines) overlaid by the “ground truth” grain map (green lines) with (b) two merged grains forming a concave 
shape and (c) an unclosed contour of grains. The green dashed lines indicate the possible locations of the missing grain boundaries. 

Fig. 4. Issues of directly applying the convex hull algorithm to UNet result (a) An example of BF-TEM image. A grain containing minor bends along the boundary is 
marked by the blue box; the grain with perfectly straight boundaries is marked by the purple box; (b) The corresponding grain boundary map of labeled by UNet; (c) 
The minor bend is annotated by the green solid lines, where the angle between two bent boundaries is larger than 180 degrees, making the contour concave; (d) 
Enlargement of the minor bend (dashed lines) and the desired straight grain boundary (solid line); (e) A perfect convex contour marked by a purple box; (f) Only 
perfect convex contours can be selected by the convexity algorithm; (g) Enlargement of the selected perfect convex contour. 
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dislocation loops (0.67-0.78) [22], and cavities (0.7-0.8) [23,24]. Note 
that the term ’black dots’ in the reference includes stacking fault 
tetrahedra, dislocation loops, and defect clusters, which are not 
considered a separate class of defects. It is also worth mentioning that 
the F1 score we assessed is based on pixel-level identification, i.e., grain 
boundary segmentation, which is slightly different from the object-level 
identification in the above references. Nevertheless, this comparison still 
provided a valuable evaluation and showed that our UNet model 
demonstrated a reasonable performance level. To further support this 
claim, Fig. 6 compares a test image, the corresponding map of grain 
boundaries labeled by a human expert, and the UNet results. It is clear 
that the grain morphology from UNet closely resembles that from 
human labeling. Note that for general semantic segmentation tasks using 
CNN models, an F1 score above 0.8 or even 0.9 is considered excellent 
[46,47]. Compared to that standard, our F1 score is still low. Corre
spondingly, some grain boundaries are missing in the UNet results, as 
marked by the red boxes in Fig. 6b and 6c. Nevertheless, we can still 
accurately measure the grain size distribution since there are a few 

hundred grains in each TEM image, so the CHAC method can select 
adequate well-labeled grains. More details are provided in the next 
Section. 

3.2. Performance of CHAC method for measuring grain sizes 

As shown in Fig. 7, we combined the UNet model and the CHAC 
method for measuring grain size distribution. Fig. 7 (a) is a test BF-TEM 
image and Fig. 7 (b) shows the grain boundaries detected by the trained 
UNet model, with convex grains identified by the CHAC method marked 
in red. In Fig. 7 (c), the convex grains found via the UNet+CHAC 
approach are overlaid on the original TEM image, showing that more 
than 70% of the total grains in the original TEM image were successfully 
detected. The situation is similar in all the other three test images. In 
Fig. 7 (d), we applied the watershed algorithm so each grain can be 
separated and easily measured. 

To quantitatively evaluate the performance of this UNet + CHAC 
approach, we compared the grain diameter distribution in four test BF- 
TEM images obtained from UNet results and the ground truth (i.e., the 
results from human experts). Note both the size distribution from UNet 
and the ground truth were processed via the CHAC method. As shown in 
Fig. 8, the histograms of grain diameter from UNet closely resemble that 

Fig. 5. The step-by-step schematic diagram of the CHAC method.  

Table 1 
Confusion matrix showing all possible prediction results of UNet model.  

Ground Truth Machine Identification 
Positive 
(Boundary) 

Negative 
(Non-boundary) 

Positive 
(Boundary) 

True Positive (TP) False Negative (FN) 

Negative 
(Non-boundary) 

False Positive (FP) True Negative (TN)  

Fig. 6. Examples of identification results of one selected representative test BF image of UNet (a) Origin BF image; (b) Ground Truth; (c) UNet identification result.  

Table 2 
Summary of the model’s identification performance evaluation metrics.  

Evaluation Metrics Accuracy Precision Recall F1 Score 

UNet 0.89 0.75 0.73 0.74  
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of the ground truth for each test TEM image. It is worth mentioning that 
the discrepancy between the UNet results and the ground truth is more 
pronounced in Image 4, which is likely caused by the relatively larger 
average grain diameters and more blurred grain boundaries. However, 
even in this special case, the histograms from UNet and human experts 
are quite similar. 

To further evaluate the effectiveness of the UNet+CHAC approach 
for automated grain size analysis, we applied this approach to a series of 
BF-TEM images of nanocrystalline UO2 under in-situ irradiation at 875K 
to the ion fluence of 6.4 × 1019 ions/m2. For a reliable evaluation, none 
of these BF-TEM images were used as training or validation data for the 
UNet model. The trend of grain growth obtained from the UNet+CHAC 
method was compared to the manual analysis in Fig. 9, which shows that 
the average grain sizes measured by both methods are very close. 
Therefore, the new automated analysis approach has achieved a com
parable performance to that of human experts. Furthermore, while it 
took about eight hours for the human expert to acquire all the data 
points represented in Fig. 9, the implementation of the automatic 
method dramatically reduced the analysis time to just about ten mi
nutes. This indicates the high efficiency of the automated approach, 
demonstrating that the UNet+CHAC approach can be applied to effi
ciently and accurately characterize grain size distribution in BF-TEM 
images. 

3.3. Effect of dataset size on UNet model performance 

When developing CNN models for semantic segmentation tasks, a 
frequently raised question is how much training data is necessary in 
order to achieve an acceptable performance. To answer this question, we 
trained our UNet model using varying sizes of training datasets and then 
calculated the model F1 score. The resulting curve is plotted in Fig. 10. 
Here we used the number of grains identified by human experts in the 
training images to represent the size of the training dataset, and the 
training datasets were randomly chosen among the ten 1024 × 1024 
pixels BF-TEM images. The F1 score was calculated using the same four 
BF-TEM images. As shown in Fig. 10, the model struggled when trained 
by only a few hundred grains, but the F1 score rapidly increased to 0.7 
with about 1000 labeled grains. Finally, the F1 score saturates around 
0.75 with ~3000 grains. A comparable trend in the relationship between 
dataset size and performance was also observed by Jacob et al., who 
employed a region-based CNN model to detect dislocations in STEM 
images [47]. Since there are a few hundred grains on average in each of 
our BF-TEM images, it indicates that the UNet model only needs about a 
few well-labeled TEM images to achieve a reasonable performance. 
Therefore, the UNet model offers not only an effective approach to 
identifying grain boundaries, but also the advantage of being a “few-
shot” model, which can be trained to accomplish a specific task using 
only a few examples [48,49]. 

Fig. 7. Examples of convex grains selected by the CHAC method. (a) A test TEM image; (b) The corresponding map of grain boundaries labeled by UNet with the 
convex contours identified by CHAC colored in red;(c) The convex contours identified by CHAC overlapped on the test image; (d) Convex contours separated by the 
watershed algorithm. The contours are labeled in different colors for ease of observation. 

X. Xu et al.                                                                                                                                                                                                                                       



Journal of Nuclear Materials 588 (2024) 154813

8

Fig. 8. (a.1) (b.1) (c.1) (d.1) are four test BF-TEM images and (a.2) (b.2) (c.2) (d.2) are the corresponding frequency distribution of grain diameters. Results of 
manual analysis and automated analysis are plotted in green and blue, respectively. The error bars were computed by assuming the number of grains within a grain 
diameter range follows the Poisson distribution. 
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4. Discussion 

The UNet+CHAC methodology conceived in this study brings two 
unique strengths to automated grain morphology analysis of BF-TEM 
images. First, it is inevitable for both machine learning models and 
human experts to mislabel some grain boundaries. In fact, even with the 
state-of-the-art performance (e.g., both precision and recall around 0.9), 
a considerable fraction of grain boundaries may still be mislabeled 
(around 10%). If not processed properly, these mislabeled grain 
boundaries can introduce significant errors in the grain size measure
ment. Based on the convex grain assumption, the CHAC method pro
vides an effective approach for selecting well-labeled grain contours, 
thereby enabling accurate grain size measurement. Second, as shown in 
Section 3.3, the UNet model only needs a handful of BF-TEM images 
containing about 3000 grains in total to reach optimal performance. 
Therefore, UNet is a few-shot model, which is particularly useful for 
scenarios where collecting a large amount of labeled data is costly or 
time-consuming, such as identifying defects in TEM images. Currently, 
our UNet model was trained using only BF-TEM images of a nano
crystalline UO2 film acquired from a specific TEM facility, so it may not 
achieve similar performance on BF-TEM images acquired from a 
different material or TEM facility. Nevertheless, by following the same 
training process and employing the UNet+CHAC approach, researchers 

can quickly train their own UNet with a few well-labeled images for 
automated grain size measurements. 

To reduce the barriers for researchers to develop their own models, 
we will share all our data, including the original and labeled TEM im
ages, the code of model training and the CHAC method, the trained UNet 
model, as well as a user manual. The details for accessing the data are 
provided in the Data Availability Section. Additionally, we call for the 
establishment of an online platform similar to the Materials Project [47, 
50], where researchers can contribute their images and annotations 
while the shared data can be reused by the wider scientific community. 
Such an infrastructure would greatly facilitate the development of more 
generalized and powerful CNN models. Moreover, recent progress in 
transfer learning has enabled machine learning models to effectively 
apply knowledge learned from a source task to another different but 
related new task, even if there is limited training data for the new task 
[51,52]. By leveraging the abundant well-labeled images on the plat
form, researchers could utilize transfer learning techniques to develop 
their own models for detecting various types of defects in TEM images. 

Despite achieving commendable performance, the UNet+CHAC 
approach can be further improved. First, the current approach is inef
fective in separating overlapped grains. Specifically, even after UNet 
correctly identifies the boundaries of two overlapped grains, the CHAC 
would usually separate them as three grains. Since overlapped grains are 
relatively rare in our TEM images, the impact on grain size measurement 
is negligible. We denote that resolving overlapped features is an intrinsic 
challenge for 2D imaging techniques. Application of 3D tomography 
techniques may help mitigate this limitation. Second, our TEM images 
were labeled by only two human experts, and we did not conduct the 
round-robin test to evaluate the errors of manual labels. As shown by 
recent studies, round-robin tests among multiple participants are 
effective in improving the accuracy of manual labels and reducing the 
bias of human experts, thereby enhancing the performance of the ma
chine learning model [20,21]. We will include more human experts in 
future studies. Third, the F1 score of our UNet model (0.74) is relatively 
lower than state-of-the-art CNN models for general semantic segmen
tation tasks (typically above 0.8 or even 0.9). Moreover, F1 score would 
generally keep increasing as the training data size increases [40]. 
However, as shown in Fig. 10, the F1 score appeared to plateau when 
more than 3000 grains were used for training. Two factors may 
contribute to this phenomenon: (1) Model Limitations: The finite num
ber of artificial neurons in the UNet model may constrain its ability to 
approximate the optimal function. Recent advances in CNN structures, 
such as U-Net++ [53], have shown improved performance than con
ventional UNet. (2) Data Noise: Training data, inherently carrying bias 
and errors from manual labeling, inevitably includes a fraction of noise. 
As size of training data expands, the value of additional data for per
formance improvement wanes due to the noise [54,55]. Therefore, po
tential solutions to this limitation could be the deployment of more 
advanced CNN models and the utilization of annotated training data 
with higher quality. It is worth noting that gathering high-quality an
notated TEM images could be a labor-intensive and resource-demanding 
task. To tackle the data scarcity, we propose two solutions: a 
data-sharing platform, as discussed earlier, and the use of synthetic 
images. Notably, deep learning-based generative models like generative 
adversarial networks (GANs) have shown considerable potential in 
augmenting the volume and diversity of training images [56]. Re
searchers have successfully applied GANs to produce SEM images of 
polycrystalline iron and enhance the performance of their UNet model 
for identifying grain morphology in SEM images [57]. Similar GANs will 
be explored to generate synthetic TEM images for improving the model 
performance in our future studies. 

5. Conclusions 

In this work, we developed an automated approach for quantifying 
the grain size evolution of nanocrystalline UO2 under in-situ ion 

Fig. 9. Grain diameters measured by the UNet-CHAC method and human ex
perts under different irradiation fluences at 875 K. The error bars correspond to 
the standard deviation of the measured grain diameters. 

Fig. 10. F1 scores as a function of the number of well-annotated grain contours 
in the images of training dataset. 
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irradiation by combining the UNet model for machine learning and a 
computer vision algorithm named CHAC. The conclusions are:  

1 The UNet+CHAC approach has proved to be effective and efficient in 
characterizing grain morphology in BF-TEM images, enabling high- 
throughput analysis of the data produced by in-situ irradiation 
experiments.  

2 The UNet model only needs a few well-annotated BF-TEM images to 
achieve a performance comparable to human experts. Meanwhile, 
the CHAC method enables accurate grain size measurement even 
with potential grain boundary mislabeling by the UNet model. 

Our studies indicate that the number of well-annotated grains plays a 
key role in controlling the performance of UNet model, so the primary 
challenge in enhancing the model performance lies in acquiring high- 
quality annotated TEM images. Establishing data sharing platforms 
and using synthetic data are promising approaches to addressing the 
data scarcity challenge. 
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