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A B S T R A C T

Introducing elastic energy in the phase field method has been shown to influence interfacial energy, depending
on the elastic interpolation scheme. This study investigates the impact of the elastic energy when using a grand
potential-based phase field method, comparing the result of Khachaturyan’s strain interpolation scheme (KHS)
and Voight-Taylor’s elastic energy interpolation scheme (VTS). The KHS model leads to a decrease in the in-
terfacial energy, while the VTS model leads to an increase. The change in interfacial energy is greater with the
VTS model than the KHS model, which suggests that the KHS model is more appropriate to limit the artificial
impact of the elastic energy on the interfacial energy. When the contribution at the interface is not negligible, it
is shown that both the microstructure evolution kinetics and the equilibrium microstructure can be influenced by
the choice of the elastic scheme being used. In addition, this paper shows that the grand potential model might
not be appropriate when the system requires the introduction of a composition-dependent term in the elastic
energy contribution. This limitation is due to the need for an explicit and invertible relation between the total
potential and the composition.

1. Introduction

Phase field modeling has been widely used for the study of micro-
structure evolution [1–3]. It allows quantitative coupling of several
physics, such as thermodynamics, mechanical deformation, and plastic
deformation. As a result, it has been used in a wide range of applica-
tions, including solid-state phase transformation [1], grain growth
[4–6], crack propagation [7–9], and numerous other phenomena
[10,11]. It can be a powerful tool for material discoveries at the me-
soscale [12]. Phase field modeling is based on a continuous description
of the microstructure, resulting in diffuse interfaces.

One limitation of some phase field models is the intrinsic coupling
between the bulk free energy of the different phases of the system and
the interfacial free energy. In the commonly used approach from
Wheeler, Boettinger, and McFadden (WBM model) [13], this coupling
causes the interfacial energy to be a function of the interface thickness.
This constraint on the interfacial thickness leads to strict requirements
on the mesh size, which directly impacts computational costs and
makes the simulation of large microstructures challenging. The grand
potential model is an alternative phase field model that, with some
assumptions, defines the interfacial thickness independently of the bulk

and interfacial free energies [14–22]. As such, the interface can be
defined larger in the grand potential model than in the WBM model,
thus reducing computational costs. The phase field approach developed
by Kim, Kim, and Suzuki (KKS) [23] also decouples the bulk and in-
terfacial free energies and reduces computational costs compared with
the WBM model. However, the grand potential model has a lower
computational and memory costs than the KKS model, as it does not
require tracking phase concentrations and has a smaller system of
equations. Assuming the assumptions required by the grand potential
model are satisfied, the grand potential model is expected to offer lower
computational costs than other phase field approaches.

As phase field models are applied to a wide variety of multi-physics
systems, adding the contribution of the elastic energy in the phase field
model is often crucial to obtain a quantitative description of the mi-
crostructure’s evolution. However, the introduction of an elastic model
can impact the interfacial energy of the system by adding an excess
elastic energy contribution at the interface, artificially increasing or
decreasing the interfacial energy of the system [24–26]. The Voight-
Taylor scheme (VTS) [27] and the Khachaturyan scheme (KHS) [28,29]
are the two different elastic schemes compared in this study. Other
elastic schemes, such as the Steinbach-Apel’s scheme (SAS) [30], more
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sophisticated versions of the KHS scheme [31,32], or recently devel-
oped schemes combining the VTS and SAS schemes [24,25] have not
been introduced in this work. The difference between the VTS and KHS
models resides in the interpolation of the elastic properties across the
interface. The objectives of this study are to quantify the excess elastic
energy introduced in the system for different interfacial thicknesses,
quantify the effect of this excess energy on microstructure evolution,
and compare the performance of the two elastic schemes when coupled
with the grand potential model. Similar comparisons of the perfor-
mance of the KHS and the VTS schemes have been done in the context
of the phase field approach developed by Kim, Kim, and Suzuki (KKS)
and have found that both elastic schemes introduced an excess elastic
energy at the interface [24,26]. However, to the authors’ knowledge,
this study is the first to focus on the effects of the different schemes on
microstructure evolution in the context of the grand potential model. As
the description of the interface differs between the KKS and grand po-
tential model, the results obtained when coupling the KKS model with
the elastic schemes cannot be extended to the grand potential model,
which motivated this study.

The grand potential model and elastic schemes are described in
Section 2. The performances of the two elastic schemes are first com-
pared in Section 3 with an analytical solution in one 2D rectangular
configuration, and another 3D circular inclusion configuration with a
cylindrical symmetry. The excess elastic contribution introduced by
both schemes is determined, and the effect of interfacial thickness on
the magnitude of this excess is quantified. The effect of the excess
elastic energy introduced at the interface by the elastic schemes on
microstructure evolution is then investigated in Section 4 to show how
the choice of elastic scheme can influence the results of a study.

In addition, in Section 5, this paper explains how the assumptions
made for the development of the grand potential model restrains the
introduction of a concentration-dependent term in addition to the
chemical free energy in the total energy functional.

2. Grand potential model coupled with elasticity

When using the grand potential model to study a system composed
of N phases ( , , …), with P crystallographic orientations for each
phase ( = …i P1 ), the properties of the system are defined by the grand
potential functional [26,14]

= + + + dV( ) .
V bulk grad chem el (1)

bulk represents the bulk grand potential density [5]
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with m scaling the value of the bulk grand potential, and i j
con-

tributing to the interfacial energy between the orientation i of phase
and the orientation j of phase . i j

can have significant effects on the
properties of bulk and on the shape and orientation of the interfaces, in
particular on triple junctions [5,33,34]. In this study, to ensure sym-
metrical interfaces and ease comparison with analytical solutions, i j

is
fixed to 1.5 [5].

grad corresponds to the contribution of the gradient of the order
parameters to the grand potential density
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where is the gradient energy coefficient, and is assumed to be in-
dependent of the composition and the interface orientation in this
model.

bulk and grad define the interfacial thickness and the interfacial
energy of the system. Moelans et al. [5] provide the expression of the
interfacial energies
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as functions of the parameters m, i j
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i j
is the bulk grand potential density at

the saddle point [5].
The term +chem el from Eq. (1) describes the grand potential density

of the contributions from the chemical free energy and the elastic free
energy. +chem el is the Legendre transform of the free energy +fchem el,
which is equal to the sum of the chemical free energy fchem and the
elastic free energy fel. +chem el is hence defined as

= = ++ +f µ f f µ ,chem el chem el chem el (6)

with µ the total potential, and = µ
µ

( , ) the solute density. fchem is
defined as

=f h f ,chem
(7)

where h are the interpolation functions described in [35] as
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and f are the Helmholtz free energy densities of the different phases.
Using the interpolation functions described in [35] ensures that the
total weight of the phase free energy contributions is equal to 1 since

=h 1. It thus has the advantage of not needing an additional
penalty to ensure = 1.

As explained by Plapp in [14], and detailed later in Section 5,
convex Helmholtz free energies and concentration-independent elastic
contribution ensure the required implicit and invertible relation be-
tween the composition c and the total potential µ. Parabolic functions
can be used as an accurate convex approximation of the Helmholtz free
energies. The chemical free energies are thus written as

= +f x k x x f( ) 1
2

( ) ,v 2 0
(9)

with k the curvature of the parabola, x v its vertex, and f 0 its minimum
value. Once the equilibrium concentration x eq and x eq have been de-
rived from the common tangent, it is possible to approximate the
Helmholtz free energies G and G of a two-phase system using para-
bolic function by solving
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for = and . The advantage of this approximation is that the
equilibrium concentrations, the common tangent, and the second de-
rivatives of the free energies around the equilibrium concentrations are
the same than with the Helmholtz free energies.

As described in Section 5, in the case of parabolic chemical free
energies and concentration-independent elastic free energies, the con-
centration in phase can be derived from the total potential using [14]
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with Va the atomic volume, assumed constant across phases.
Finally, the elastic free energy fel depends on the elastic scheme

being used. In this study, the VTS [27] and KHS [28] elastic schemes
are compared. The difference between the two models lies in the in-
terpolation of the material properties at the interface. In the VTS model,
the stress and strain are determined separately in each phase, where the
elastic energy is then derived. Only then is the global free elastic energy
defined as the interpolation of all the elastic free energies
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In the KHS model, the stiffness tensor and the misfit strain are in-
terpolated to create a global stiffness tensor
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and a global elastic strain
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where tot is the total strain and is the eigenstrain of phase . The
stress is then determined as a global stress and the contribution of the
elastic free energy is derived as
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In both elastic models, the mechanical equilibrium equation is
solved assuming a quasi-steady state:

=· 0.ij (18)

The field variables of the grand potential model are the total po-
tential µ and the order parameters . Plapp describes the derivation of
the equations governing the evolution of these field variables [14]. The
evolution of the total potential is given by
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The first term on the right hand side is analogous to a diffusion
term, while the second term corresponds to the effect of a difference in
composition at the interfaces. D is the solute diffusion coefficient and
the susceptibility is defined as
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µ µ
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2
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The evolution of the order parameters follows the Allen-Cahn
equation [36,23]

=
t

L ,i

i (21)

where L is a positive kinetic constant that corresponds to the mobility of
the interfaces, and is the grand potential functional introduced in Eq.
(1).

3. Evaluation of the excess elastic energy

In order to quantify the excess elastic energy introduced in the in-
terface in grand potential models coupled with the KHS and the VTS
models, their predictions were compared with analytical solutions for a
particular system described in Section 3.1 in different configurations
shown in Fig. 1.

3.1. System description

The system is composed of two phases: and . All the parameters
and constants of the two-phase system were defined as described in
Table 1. is defined equal to

m
1 and = = 1.5, , , such that the in-

terfacial energy , is fixed equal to 2
3

and the interfacial thickness l ,

is equal to
m

2 2 . Varying values of m define different values of the in-
terfacial thickness at a fixed interfacial energy value, which allows
studying the effect of the interfacial thickness on the magnitude of the
excess elastic energy. To remain general, the system is adimensional.

3.2. Configurations

Both configurations represent the two-phase system, one being a
rectangular configuration, the other being a 3D circular inclusion
configuration with cylindrical symmetry, as shown in Fig. 1.

The rectangle configuration shown in Fig. 1a is shared in half by the
and the phases. The domain is 100 units of length long and 10/512

wide. A zero-gradient boundary condition is imposed to , , and µ

Table 1
Constants and parameters used for the verification of the model.

Constant Value Constant Value

=k k 10 Va 1

=f f0 0 0 L 1

x eq 0.1 D 1

x eq 0.9 =11 22 0.01

=, , 1.5 = = =33 23 13 12 0

m
1 =C C11 11

40

, 2
3

=C C22 22
40

l ,
m

2 2 =C C12 12
20

Fig. 1. Schematic of the geometry of the domain for the two configurations. (a)
is a rectangular configuration, and (b) represents a 3D circular inclusion with
cylindrical symmetry. Using these configurations allows verifying the model
with two significantly different stress fields. For both configurations, the profile
of the results was plotted along the red line.
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on all boundaries, while, concerning displacements, =u 0x on the left
and right boundaries, and =u 0y on the top and bottom boundaries.
The initial conditions for the total potential and the order parameters
were the equilibrium conditions for an interface ( = = 0.5) situated
in the middle of the domain in the x-direction. Plane strain conditions
are imposed.

The domain for the 3D circular inclusion is an infinite cylinder with
a radius of =R 400. The circular inclusion of phase is at the center of
the domain with a radius equal to =r 30, as shown in Fig. 1b. The
simulation uses the fact that the cylinder is infinitely long to describe it
in 2D, and takes advantage of the cylindrical symmetry of the config-
uration to further reduce the system’s dimension to a 1D line which is
shown in red in Fig. 1b. A zero-gradient boundary condition was im-
posed to , , and µ, while the displacement was defined equal to
zero at the center of the circular inclusion, and let free on the outside
end. The radius of the domain was defined to be large enough to have
almost no displacement due to the inclusion at the edge of the domain.
The initial conditions for the total potential and the order parameters
were the equilibrium conditions for a circular inclusion in an matrix.
Plane strain conditions are imposed.

3.3. Numerical method

All simulations have been performed using the Multiphysics Object-
Oriented Simulation Environment MOOSE [37–40]. The numerical
parameters are the same for both elastic schemes to ensure that dif-
ferences in the models’ predictions are exclusively due to the different
elastic schemes. For both configurations, the variables are defined as
linear Lagrange elements, and equations are solved using a pre-
conditionned Jacobian-free Newton-Krylov method and the second-
order accurate backward difference formula for time integration. To
reduce computational costs, an iteration adaptive time-stepping scheme
is used with a number of optimal iterations equal to 5 ± 1 and a
maximum of 5 % increase per time step. No mesh adaptivity is in-
troduced in the simulation. In the 2D configuration, the mesh is fixed
with one element in the y-direction, and 5120 square elements in the x-
direction to resolve the interface. In the 3D circular inclusion, the 1D
lined used to simulate the entire domain using cylindrical symmetry is
meshed with 5120 elements of equal size to resolve the interface.

3.4. Analytical solutions

The analytical solution used to verify the models consists of ex-
pressions for the total strain defined as the sum of the elastic strain and
the eigenstrain in Eq. (16), the stress components, and the elastic free
energy. The derivations of the analytical solution for the two config-
urations of interest can be found in several articles [24,26]. To de-
termine the strain, the stress and the elastic free energy, the phase is
taken as a reference and the phase is compressed to fit the smaller
volume of the phase. The derivation of the analytical solution in the
case of the 2D rectangular configuration can be found in [26]. The
analytical solution for the 3D circular inclusion is based on the Eshelby
solution for a misfit isotropic inclusion derived in [41] and used in
[25,26].

3.5. Simulations results and discussion

The profiles of the total strain, stress, and elastic free energy across
the domain for the two elastic schemes and the two configurations are
provided in Fig. 2. Both the KHS and VTS models accurately predict the
total strain (cf. Fig. 2a and b), the stress (cf. Fig. 2c and d), and the
elastic energy (cf. Fig. 2e and f) far from the interface. At the interface,
the KHS and VTS models provide similar predictions of strain and
stress, but differ in their elastic free energy profiles. The profile of the
elastic free energy across the interface allows comparing the perfor-
mances of the different elastic models (cf. Fig. 2e and f). The elastic free

energy of the analytical solution corresponds to an interpolation of the
elastic free energy using the order parameter profile obtained without
elasticity. Any departure from the profile of elastic energy provided by
the analytical solution is referred to as the excess elastic energy. The
analytical solution thus presents, by construction, no excess elastic
energy. The VTS and KHS models present respectively a positive excess
elastic energy with a large peak at the interface and a slightly negative
excess elastic free energy. Due to the lower magnitude of the excess
elastic energy, the KHS model seems more appropriate than the VTS
model for the introduction of the elastic free energy contribution to the
grand potential. These observations and this conclusion are consistent
with previous studies published by Durga et al. and Aagesen et al. when
comparing the VTS and KHS models with different phase field ap-
proaches [24,26]. In all cases, the predictions for the stress, strain, and
elastic energy were accurate within the phases, and the KHS scheme
provided better results than the VTS scheme.

As shown in Fig. 2, the differences between the models’ results and
the analytical solution lie at the interface. It is important to remember
that the strain and stress fields predicted by the analytical solution are
derived from a system with sharp interfaces, whereas the grand po-
tential model presents continuous interfaces, which explains the dif-
ferences in Fig. 2a–d. A convergence study presented in Fig. 3 shows
that decreasing the interface thickness of the system reduces the mag-
nitude of the excess free energy. The results were obtained by de-
creasing the interfacial thickness while keeping a constant interfacial
energy. Since for = = m1.5, 21

3 and =l
m
8 , one can vary m and

to change the interface thickness while keeping the interfacial energy
constant by ensuring = m

1 . Simulations were run until equilibrium for
both elastic models for several values of the interfacial thickness ran-
ging from 0.25 to 16 units of length. Then, the excess elastic energy
between the simulation results and the analytical solution was defined
as the difference between the integral of the elastic energy predicted by
the elastic scheme and the analytical elastic energy, as

=F f f dS,el
Excess

S el
Scheme

el
Analytical

(22)

with Fel
Excess the excess elastic free energy, fel

Scheme the integral over the
domain of the elastic free energy derived using the KHS or VTS elastic
scheme, and fel

Analytical the integral of the elastic free energy derived
using the analytical solution.

The results for the rectangular configuration are presented in
Fig. 3a, and the results for the circular inclusion are provided in Fig. 3b.
In both configurations, the figures show that the excess elastic energy
between the simulation results and the analytical solution decreases
linearly with the interfacial thickness. The result of the convergence
study confirms that the differences observed between the models’ pre-
dictions and the analytical solution at the interface can be limited by
using a small interface thickness. The magnitude of the excess elastic
energy is lower with the KHS model than with the VTS model.

4. Influence on microstructure evolution

As previously presented, the coupling of a phase field model with an
elastic scheme introduces an undesirable excess energy at the interface.
The impact of this excess elastic free energy on microstructure evolu-
tion is investigated by comparing the results of 2D simulations using an
elastic-free grand potential model, as well as grand potential models
coupled with the VTS and the KHS schemes. For each model, three si-
mulations are performed with different interfacial lengths to investigate
the effect of the magnitude of the excess elastic energy at the interface
on the microstructure evolution.

4.1. Model description

The value of the parameters used in the phase field models are
presented in Table 2. The contribution of the elastic free energy is
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linked to the ratio =L lC
,

2

,
between the elastic constants C, the

magnitude of the eigenstrain , and the interface thickness l , over
the interface energy , [26]. C is defined as an appropriate elastic
constant and is here defined as = +C C C( )/211 22 [42,26]. The excess
energy contribution thus becomes significant when the elastic constant,
the eigenstrain, or the interface thickness are great relative to the in-
terfacial energy. To investigate the effect of the interfacial length, three
different systems with = =l l2.5, 5, and =l 10 are studied for each
model. Using the model parameters provided in Table 2,

= = =L L L1.06, 2.12, 4.24 for = = =l l l2.5, 5, 10, respectively.
Since >L 1 for all systems, the contribution of the excess energy is
expected to be significant and increase as the interfacial length in-
creases.

The simulation domain is a 400 × 400 square with periodic
boundary condition for the order parameters and and the total

potential µ. The displacement in the x-direction is periodic in the y-
direction, and vice versa. Initially, the order parameters are defined to
obtain a microstructure composed of ellipsoids as shown in Fig. 4a and
b. The total potential is initially homogeneously equal to =µ 0.40 ,
which means that the system is under-saturated. Both simulations are
performed until equilibrium. Plane strain conditions are imposed.

4.2. Numerical method

The numerical parameters are the same for all three models to en-
sure that differences in the models’ predictions are exclusively due to
the different elastic schemes. In all simulations, the variables are de-
fined as linear Lagrange elements, and equations are solved using a
preconditionned Jacobian-free Newton-Krylov method and the second-
order accurate backward difference formula for time integration. To
reduce computational costs, an iteration adaptive time-stepping scheme

Fig. 2. Comparison of (a, b) the total strain, (c, d) the stress, and (e,f) the elastic energy density profiles derived using different elastic models (VTS and KHS) with the
analytical solution for the (a, c, e) rectangular configuration and the (b,d,f) circular inclusion with an interfacial thickness equal to 8. Both the KHS and VTS models
accurately predict the total strain, the stress, and the elastic energy far from the interface. At the interface, the KHS and VTS provide similar predictions of strain and
stress, but differ in their elastic free energy profiles. The VTS model overestimates the elastic energy, while the KHS model underestimates it.
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is used to increase the initial time step of 1 with a number of optimal
iterations equal to 5 ± 1 and a maximum of 5 % increase per time step.
However, the maximum time step was fixed at =dt 50 to ensure the
accuracy of the predictions. Moreover, three levels of mesh adaptivity
are introduced to resolve the interface with 5 elements, independently
of the interfacial length. For more information, refer to the input files
available as research data.

4.3. Results and discussion

Contrasting the predictions of the three different phase field models
including no mechanics, the VTS scheme, and the KHS scheme, it ap-
pears that microstructure evolution is influenced by the elastic scheme
and the interfacial length.

For a given interfacial length, the elastic scheme impacts micro-
structure evolution and the equilibrium microstructure. As discussed in
Section 3, the VTS and the KHS scheme respectively introduce a posi-
tive and negative excess elastic energy at the interface. The VTS scheme
thus results in quicker kinetics than the KHS model. Fig. 4 shows the
microstructure evolution with the VTS and the KHS models for =l 10.
Despite having the same initial conditions including 6 distinct particles,
the microstructure in Fig. 4c predicted by the VTS model contains only
3 particles at time =t 11723, while the microstructure in Fig. 4d derived
by the KHS model still show 5 particles later, at time =t 13002. This
difference in kinetics is shown more quantitatively in Fig. 5, which
presents the evolution of the number of particles for the elastic free
simulations (cf. Fig. 5a and b) as well as the VTS and KHS model (cf.

Fig. 3. Evolution of the excess elastic energy Fel
Excess between the simulation results provided by both the VTS and KHS scheme and the analytical solution for the (a)

rectangular configuration and the (b) circular inclusion configuration as a function of the interfacial thickness. The magnitude of the excess elastic energy introduced
in the system by the VTS model is consistently greater than for the KHS model. For both models, the excess elastic energy introduced at the interface increases
proportionally with the interfacial thickness.

Table 2
Constants and parameters used in the model.

Constant Value Constant Value

=k k 10 Va 1

=f f0 0 0 L 1

x eq 0.1 D 1

x eq 0.9 =11 22 0.05

=, , 1.5 = = =33 23 13 12 0

=m 1
l
2 2

,
=C C11 11

40

, 2
3

=C C22 22
40

l , = 2.5, 5, 10m
2 2 =C C12 12

20

Fig. 4. Evolution of the microstructure when =l 10 for (a, c, e) the VTS and (b,
d, f) the KHS elastic scheme. The comparison of the microstructures obtained by
the two different elastic schemes exposes the possible strong impact of the
excess interfacial energy on microstructure evolution, influencing the kinetics
of evolution as well as the equilibrium concentrations. The initial conditions are
the same for both models (a,b). However, as the system evolves, particles dis-
appear quicker with the VTS model, leading to a microstructure with 3 particles
at =t 11723 (c), while (d) shows 5 particles at =t 13002. In (e) and (f), the
equilibrium concentrations are different than =c 0.1alpha

eq and =c 0.9beta
eq . The

shifts in equilibrium concentration due to the introduction of elastic energy by
the models are different ( ×9.45 10 3 for the VTS scheme, ×8.65 10 3 for the
KHS scheme), leading to an equilibrium particle size 5.3% larger for the KHS
model than for the VTS model. The domain size is ×400 400.
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Fig. 5c and d). In both Fig. 5c and d, it is possible to see that for a fixed
interfacial length, the dissolution is quicker with the VTS than with the
KHS model. Moreover, it is interesting to see that the excess elastic
energy at the interface impacts the effective interfacial length of the
system. When the model parameters are defined to fix =l 10 following
Eq. (5), the equilibrium microstructures shown in Fig. 4e and f have an
interfacial length of = <l l8.4VTS and = >l l14.5KHS , respectively. This
is because a positive excess elastic energy increases the constraints on
the interface of the system, while a negative excess elastic energy ar-
tificially relaxes these constraints, leading to a greater interfacial length
with the KHS model than with the VTS when the contribution from this
excess energy is significant. This, as will be discussed later, leads to
even greater differences between the two models.

In addition to changing the kinetics and the effective interfacial
energy, the elastic scheme influences the equilibrium microstructure by
changing the elastic contribution to the model. As Cahn and Larché
mentioned in [43], the elastic energy term modifies the equilibrium
concentrations of the phases involved from the equilibrium predicted
by chemistry alone. This concentration shift explains in part the dif-
ferent kinetics between the elastic-free model and the other two, which
can be seen when comparing Fig. 5a with c and Fig. 5b with d. How-
ever, since the VTS and the KHS introduce an excess elastic energy at

Fig. 5. Evolution of the number of precipitates predicted by the model without elasticity (a, b), and the models coupled with the KHS and VTS schemes(c, d). (a) and
(c) shows the evolution of the number of precipitates during the whole simulations, while (b) and (d) focuses on the early stages of the simulation. The kinetics of the
microstructure evolution is affected by the choice of elastic scheme, with the microstructure evolution predicted by the KHS model being consistently slower than the
one predicted with the VTS model in this study. As observed in Fig. 4, for an interfacial length equal to =l 10, VTS predicts a microstructure with 3 particles at

=t 11723, while KHS still predicts 5 particles at =t 13002, and 4 particles until =t 14934. As the interfacial thickness increases, the difference between the two
models increases as well. As expected, as interfacial thickness decreases, the predictions of both models converge. Moreover, the differences due to the interfacial
length in (a) and (b) are aggravated by the VTS model, and reduced or even reversed by the KHS scheme.

Fig. 6. Evolution of the shift in equilibrium concentrations ceq as a function of
the interfacial length l for both the KHS and VTS models. As expected, cVTS

eq

increases as l increases due to the positive excess elastic energy, while cKHS
eq

decreases as l increases due to the negative excess elastic energy. When l de-
creases towards 0, cVTS

eq and cKHS
eq seem to converge towards = ×c 8.9 10eq 3,

which thus corresponds to the shift in concentration due to the presence of
elasticity predicted due to the Gibbs-Thompson effect.
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the interface, they both lead to an artificial additional shift in the
equilibrium concentration in addition to the shift due to elasticity
alone. As shown in Fig. 6, in this study, the simulations presented in
Fig. 4e and f show a positive shift equal to = ×c 9.45 10VTS

eq 3 for the
VTS scheme, and equal to = ×c 8.65 10KHS

eq 3 for the KHS scheme
compared to equilibrium concentrations predicted from the chemistry
of the system alone, presented in Table 1 ( =c 0.1eq and =c 0.9eq ). As
stated earlier, these shifts correspond to the sum of the expected shift
due to the elastic energy with the shift due to the excess elastic energy
introduced. These shifts lead to different predictions for the equilibrium
size of the precipitate. Furthermore, the particle size, in turn, influences
the elastic contribution to the system, shifting the equilibrium con-
centration further.

As interfacial length increases, the contribution of these two effects,
namely the impact of the elastic scheme on the interfacial energy and
the elastic contribution, become more important, and affect both ki-
netics and equilibrium microstructure. To understand the effect of the
interface length on the models’ kinetics, it is first important to under-
stand the effect that the interfacial length has on kinetics without
elasticity. When no elasticity is added to this model, a longer interfacial
length leads to quicker dissolution kinetics, as shown in Fig. 5a and b.
This is because modifying and m changes the value of introduced in
Eq. (19) and defined in Eq. (20) and of the driving force in Eq. (21). In
this study, the interfacial length l is changed while keeping the inter-
facial energy constant. As l increases, =m l

2 2 decreases and = m
1

increases to keep = 2
3 . As a result, in Eq. (20), the term

µ
bulk2
2 de-

creases and the term
µ
grad2

2 increases. Similarly, in Eq. (19), the term
bulk decreases while the term grad increases. These changes influence

the evolution kinetics, which in this case, lead to a quicker dissolution
for higher interfacial lengths, even without elastic contribution. In ad-
dition to this effect, the introduction of elastic schemes in the phase
field model leads to greater differences between simulations with dif-
ferent interfacial lengths. As shown in Fig. 3, the magnitude of the
excess of energy at the interface introduced by the elastic models is a
function of the interfacial length. As a result, as the interfacial length
increases, the VTS model will tend to dissolve quicker, while the KHS
model will tend to predict slower dissolution. As shown in Fig. 5c and d,
when using the VTS model, dissolution simulations with a larger in-
terfacial length, which already had a high effective kinetic parameter L
as discussed above, become even quicker because of the positive excess
energy at the interface. When using the KHS model, the higher dis-
solution kinetics for larger interfacial lengths are reduced, or even re-
versed by the negative excess elastic energy, as shown in Fig. 5c and d.
The reason why the KHS scheme only reduces the difference at the early
stages of the simulation and reverses them later is that the micro-
structure evolution is initially governed by the chemical driving force,
whereas the contribution from the interfacial energy becomes more
important only later. Moreover, Fig. 5c and d shows that as the inter-
facial length decreases, the magnitude of the excess elastic energy de-
creases, and the difference between the predictions of the VTS and the
KHS model decreases as well. As the interfacial length converges to-
wards 0, the models’ predictions converge towards a solution without
any excess of energy at the interface.

In addition to its effect on evolution kinetics, changing the inter-
facial length also affects the equilibrium microstructure. In particular,
as shown in Fig. 6, the shift in equilibrium concentration depends lin-
early on the interfacial length. This shift increases with increasing in-
terfacial length with the VTS model due to the positive excess elastic
energy, and decreases with increasing interfacial length with the KHS
model due to the negative excess elastic energy. This leads to greater
error in model prediction as the interfacial length increases. It is in-
teresting to note that the shift in equilibrium composition can be de-
coupled in the two parts described above: the Gibbs-Thompson effect
and the shift due to the excess of elastic energy. As the interfacial length

decreases, the two linear regressions for the VTS and KHS models
shown in Fig. 6 converge towards = ×c 8.9 10eq 3, which corresponds
to the shift in equilibrium concentration without excess elastic energy
predicted by the Gibbs-Thompson effect. The rest of the shift, positive
for the VTS model, and negative for the KHS model, corresponds to the
shift due to the excess elastic energy.

Microstructure evolution depends strongly on the choice of elastic
scheme, especially when the contribution of the excess elastic energy
becomes significant. This means that when the elastic constants, the
eigenstrain values, and the interfacial thickness are large, or when the
interfacial energy is small, the choice of elastic scheme affects the phase
field predictions. The different elastic schemes predict different ki-
netics, different equilibrium compositions, different interfacial energy,
and different effective interfacial length. As a result, it is recommended
to limit the interfacial length when possible and favor the KHS model
over the VTS model to limit the undesired effects of the elastic scheme
on microstructure evolution.

5. Additional note on a limitation of the grand potential model

In his paper, Plapp described the development of a grand potential
model and showed the equivalence with a WBM phase field model
based on the total energy functional [14]. The system being studied
includes the energy contributions from the bulk, the interface, and the
chemistry of the phases. One of the main limitations described in his
publication is the need for an explicit and invertible expression between
the chemical potential and the composition. In general, such an explicit
and invertible expression is required between the total potential and the
concentration to account for the contribution of other sources of energy
in the system.

For the expression to be invertible, the total free energy density ftot
has to be a convex function of the composition. This ensures that the
relation between the total potential provided by

=µ
f

.tot

(23)

and the concentration c is monotonous and thus invertible.
The conditions expressed in [14] can be derived by having the total

free energy equal to the sum of the chemical contribution fchem and the
interfacial contribution fint such that = +f f ftot chem int . In that case, if fint
is independent of the concentration (no square gradient terms in c),
then Eq. (23) becomes

=
+

= + = =µ
f f f f f

µ
( )

,chem int chem int chem
chem (24)

which shows that the condition on ftot becomes a condition on fchem
alone.

However, if the system includes another concentration-dependent
energy contribution, such as elastic energy fel, Eq. (23) becomes

=
+ +

= +µ
f f f f f( )

.chem int el chem el

(25)

It is important to note, however, that ftot being convex only ensures
that there is an invertible relation between the total potential µ and the
concentration c. For the relation to be explicit, which is necessary to
have a solvable system linking c to µ, the conditions on the composi-
tion-dependency of fel can be quite restrictive and depend on the system
being studied. This difficulty can be avoided by introducing in the
system of equations of the model an equation to solve Eq. (25) for the
concentration c. However, numerical complications could arise.

These conditions can make it challenging to introduce some physics
into a grand potential model. For example, it is difficult to properly
introduce the strain due to the presence of solute atoms in the matrix. In
phase field models, this strain could be added to the model in several
ways. One way, when using the KHS scheme, could be to define as
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= + c* * ,ij ij ij, ,
,1

,
,2 (26)

with *ij,,1 and *ij,,2 independent of the concentration c. This expression of
the eigenstrain would then go into Eq. (16) and make the elastic energy
defined in Eq. (17) concentration-dependent. However, in the context
of the grand potential model, ensuring that fel is convex and that the
relation between the total potential µ and the concentration c is explicit
can lead to restrictions on the shape of the stiffness tensors Cijkl, and the
eigenstrain components *ij,,1 and *ij,,2 . This limitation might disqualify
the use of the grand potential model for certain studies.

6. Conclusion

Two grand potential models coupled with different elastic inter-
polation models have been developed in MOOSE. The performance of
these models has been evaluated by comparing their results to analy-
tical solutions in two different configurations. The VTS model, an en-
ergy interpolation, introduces a large positive excess elastic energy at
the interface, while the KHS model, an interpolation of elastic proper-
ties, introduces a negative excess elastic energy contribution, generally
smaller in magnitude than the VTS model. Besides, this study provides
an evaluation of the magnitude of the excess energy introduced by
elastic schemes, and it has been shown to proportionally decrease to-
wards zero with the interfacial thickness.

Moreover, it was shown that morphology evolution predicted by the
grand potential models coupled with elastic schemes depends strongly
on the choice of the elastic model when the contribution of the excess
energy becomes significant. When choosing the interfacial length to
resolve the microstructure while limiting the computational cost of the
simulation, it is also important to consider the contribution of the ex-
cess elastic energy at the interface. Authors thus suggest limiting the
interfacial length and recommend the use of the KHS model over the
VTS model to limit the artificial effect of the elastic scheme on micro-
structure evolution kinetics, interfacial energy, interfacial length, and
equilibrium microstructure.

The paper also exposes one potential limitation of the grand po-
tential model. Since an explicit and invertible relation has to link the
total potential and the composition, the introduction of a composition-
dependent elastic contribution in the model can be challenging.

Data availability

The MOOSE grand potential phase field model input files used to
run the simulations are available to download in the ‘Research Data’
Section. The MOOSE source code can be obtained from http://
mooseframework.org/.

CRediT authorship contribution statement

Larry K. Aagesen: Supervision, Conceptualization, Methodology,
Writing - review & editing, Funding acquisition, Resources. Arthur T.
Motta: Supervision, Writing - review & editing, Funding acquisition.
Michael R. Tonks: Supervision, Conceptualization, Writing - review &
editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgments

This research made use of the resources of the High Performance
Computing Center at Idaho National Laboratory, which is supported by
the Office of Nuclear Energy of the U.S. Department of Energy and the

Nuclear Science User Facilities under Contract No. DE-AC07-
05ID14517.

This work was funded in part by the Department of Energy Nuclear
Energy Advanced Modeling and Simulation program. This manuscript
has been authored in part by Battelle Energy Alliance, LLC under
Contract No. DE-AC07-05ID14517 with the US Department of Energy.
The United States Government retains and the publisher, by accepting
the article for publication, acknowledges that the United States
Government retains a nonexclusive, paid-up, irrevocable, world-wide
license to publish or reproduce the published form of this manuscript,
or allow others to do so, for United States Government purposes.

The work is also supported by the DOE NEUP IRP project IRP-17-
13708 “Development of a Mechanistic Hydride Behavior Model for
Spent Fuel Cladding Storage and Transportation”.

References

[1] L.Q. Chen, Phase-field models for microstructure evolution, Annu. Rev. Mater. Res.
32 (2002) 113–140.

[2] N. Moelans, B. Blanpain, P. Wollants, An introduction to phase-field modeling of
microstructure evolution, Calphad 32 (2008) 268–294.

[3] I. Steinbach, Phase-field models in materials science, Modell. Simul. Mater. Sci. Eng.
17 (2009) 073001 .

[4] C.E. Krill, Phase-field modeling of grain growth, Handbook of Materials Modeling,
Springer, Netherlands, Dordrecht, 2005.

[5] N. Moelans, B. Blanpain, P. Wollants, Quantitative analysis of grain boundary
properties in a generalized phase field model for grain growth in anisotropic sys-
tems, Phys. Rev. B 78 (2008) 024113 .

[6] N. Moelans, F. Wendler, B. Nestler, Comparative study of two phase-field models for
grain growth, Comput. Mater. Sci. 46 (2009) 479–490.

[7] R. Spatschek, E. Brener, A. Karma, Phase field modeling of crack propagation,
Philos. Mag. 91 (2011) 75–95.

[8] P. Chakraborty, Y. Zhang, M.R. Tonks, Multi-scale modeling of microstructure de-
pendent intergranular brittle fracture using a quantitative phase-field based
method, Comput. Mater. Sci. 113 (2016) 38–52.

[9] N.P. Mitchell, V. Koning, V. Vitelli, W. Irvine, Fracture in sheets draped on curved
surfaces, Nat. Mater. 16 (2017) 89–93.

[10] F.T. Huang, F. Xue, B. Gao, L.H. Wang, X. Luo, et al., Domain topology and domain
switching kinetics in a hybrid improper ferroelectric, Nat. Commun. 7 (2016)
11602.

[11] T. Koyama, Phase-field modeling of microstructure evolutions in magnetic mate-
rials, Sci. Technol. Adv. Mater. 9 (2008) 013006 .

[12] M.R. Tonks, L.K. Aagesen, The phase field method: mesoscale simulation aiding
material discovery, Annu. Rev. Mater. Res. (2019) 49:annur-
ev–matsci–070218–010151.

[13] A.A. Wheeler, W.J. Boettinger, G.B. McFadden, Phase-field model for isothermal
phase transitions in binary alloys, Phys. Rev. A 45 (1992) 7424–7439.

[14] M. Plapp, Unified derivation of phase-field models for alloy solidification from a
grand-potential functional, Phys. Rev. E 84 (2011) 031601 .

[15] L.K. Aagesen, Y. Gao, D. Schwen, K. Ahmed, Grand-potential-based phase-field
model for multiple phases, grains, and chemical components, Phys. Rev. E 98
(2018) 023309 .

[16] A. Choudhury, B. Nestler, Grand-potential formulation for multicomponent phase
transformations combined with thin-interface asymptotics of the double-obstacle
potential, Phys. Rev. E 85 (2012).

[17] J. Hötzer, M. Jainta, P. Steinmetz, B. Nestler, A. Dennstedt, et al., Large scale phase-
field simulations of directional ternary eutectic solidification, Acta Mater. 93 (2015)
194–204.

[18] P. Steinmetz, M. Kellner, J. Hötzer, A. Dennstedt, B. Nestler, Phase-field study of the
pattern formation in Al-Ag-Cu under the influence of the melt concentration,
Comput. Mater. Sci. 121 (2016) 6–13.

[19] P. Steinmetz, J. Hötzer, M. Kellner, A. Genau, B. Nestler, Study of pattern selection
in 3D phase-field simulations during the directional solidification of ternary eu-
tectic Al-Ag-Cu, Comput. Mater. Sci. 148 (2018) 131–140.

[20] M. Kellner, I. Sprenger, P. Steinmetz, J. Hötzer, B. Nestler, M. Heilmaier, Phase-field
simulation of the microstructure evolution in the eutectic NiAl-34Cr system,
Comput. Mater. Sci. 128 (2017) 379–387.

[21] Y.C. Yabansu, P. Steinmetz, J. Hötzer, S.R. Kalidindi, B. Nestler, Extraction of re-
duced-order process-structure linkages from phase-field simulations, Acta Mater.
124 (2017) 182–194.

[22] K. Dargahi Noubary, M. Kellner, P. Steinmetz, J. Hötzer, B. Nestler, Phase-field
study on the effects of process and material parameters on the tilt angle during
directional solidification of ternary eutectics, Comput. Mater. Sci. 138 (2017)
403–411.

[23] S.G. Kim, W.T. Kim, T. Suzuki, Phase-field model for binary alloys, Phys. Rev. E 60
(1999) 7186–7197.

[24] A. Durga, P. Wollants, N. Moelans, Evaluation of interfacial excess contributions in
different phase-field models for elastically inhomogeneous systems, Modell. Simul.
Mater. Sci. Eng. 21 (2013) 055018 .

[25] A. Durga, P. Wollants, N. Moelans, A quantitative phase-field model for two-phase

P-C. A. Simon, et al. Computational Materials Science 183 (2020) 109790

9

http://mooseframework.org/
http://mooseframework.org/
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0005
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0005
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0010
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0010
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0015
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0015
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0020
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0020
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0025
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0025
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0025
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0030
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0030
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0035
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0035
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0040
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0040
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0040
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0045
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0045
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0050
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0050
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0050
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0055
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0055
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0060
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0060
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0060
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0065
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0065
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0070
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0070
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0075
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0075
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0075
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0080
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0080
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0080
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0085
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0085
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0085
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0090
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0090
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0090
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0095
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0095
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0095
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0100
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0100
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0100
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0105
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0105
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0105
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0110
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0110
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0110
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0110
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0115
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0115
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0120
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0120
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0120
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0125


elastically inhomogeneous systems, Comput. Mater. Sci. 99 (2015) 81–95.
[26] L.K. Aagesen, D. Schwen, K. Ahmed, M.R. Tonks, Quantifying elastic energy effects

on interfacial energy in the Kim-Kim-Suzuki phase-field model with different in-
terpolation schemes, Comput. Mater. Sci. 140 (2017) 10–21.

[27] K. Ammar, B. Appolaire, G. Cailletaud, S. Forest, Combining phase field approach
and homogenization methods for modelling phase transformation in elastoplastic
media, Revue européenne de mécanique numérique 18 (2009) 485–523.

[28] Armen G. Khachaturyan, Theory of Structural Transformations in Solids, Wiley,
New York, 1983 available at: https://scholar.google.com/scholar_lookup?title=
Theory%20of%20Structural%20Transformations%20in%20Solids&publication_
year=1983&author=A.G.%20Khachaturyan.

[29] D.Y. Li, L.Q. Chen, Computer simulation of morphological evolution and rafting of
particles in Ni-based superalloys under applied stresses, Scr. Mater. 37 (1997)

1271–1277.
[30] I. Steinbach, M. Apel, Multi phase field model for solid state transformation with

elastic strain, Physica D 217 (2006) 153–160.
[31] S.Y. Hu, L.Q. Chen, A phase-field model for evolving microstructures with strong

elastic inhomogeneity, Acta Mater. 49 (2001) 1879–1890.
[32] P. Yu, S.Y. Hu, L.Q. Chen, Q. Du, An iterative-perturbation scheme for treating

inhomogeneous elasticity in phase-field models, J. Comput. Phys. 208 (2005)
34–50.

[33] G.I. Tóth, Phase-field modeling of isothermal quasi-incompressible multicomponent
liquids, Phys. Rev. E 94 (2016) 033114 .

[34] P.C. Bollada, P.K. Jimack, A.M. Mullis, Multiphase field modelling of alloy solidi-
fication, Comput. Mater. Sci. 171 (2020) 109085 .

[35] N. Moelans, A quantitative and thermodynamically consistent phase-field inter-
polation function for multi-phase systems, Acta Mater. 59 (2011) 1077–1086.

[36] J.W. Cahn, S.M. Allen, A microscopic theory for domain wall motion and its ex-
perimental verification in Fe-Al alloy domain growth kinetics, Le Journal de
Physique Colloques (1977) 38:C7–51–C7–54.

[37] M.R. Tonks, D. Gaston, P.C. Millett, D. Andrs, P. Talbot, An object-oriented finite
element framework for multiphysics phase field simulations, Comput. Mater. Sci. 51
(2012) 20–29.

[38] D. Schwen, L.K. Aagesen, J.W. Peterson, M.R. Tonks, Rapid multiphase-field model
development using a modular free energy based approach with automatic differ-
entiation in MOOSE/MARMOT, Comput. Mater. Sci. 132 (2017) 36–45.

[39] C.J. Permann, D.R. Gaston, D. Andrš, R.W. Carlsen, F. Kong, et al., MOOSE: en-
abling massively parallel multiphysics simulation, SoftwareX 11 (2020).

[40] D. Gaston, C. Newman, G. Hansen, D. Lebrun-Grandié, MOOSE: a parallel compu-
tational framework for coupled systems of nonlinear equations, Nucl. Eng. Des. 239
(2009) 1768–1778.

[41] X. Jin, L.M. Keer, Q. Wang, A closed-form solution for the Eshelby tensor and the
elastic field outside an elliptic cylindrical inclusion, J. Appl. Mech. 78 (2011)
031009 .

[42] P.W. Voorhees, W.C. Johnson, The thermodynamics of elastically stressed crystals,
Solid State Physics – Advances in Research and Applications, vol. 59, Academic
Press Inc., 2004, p. 59.

[43] J.W. Cahn, F. Larché, A simple model for coherent equilibrium, Acta Metall. 32
(1984) 1915–1923.

P-C. A. Simon, et al. Computational Materials Science 183 (2020) 109790

10

http://refhub.elsevier.com/S0927-0256(20)30281-0/h0125
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0130
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0130
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0130
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0135
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0135
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0135
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0145
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0145
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0145
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0150
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0150
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0155
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0155
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0160
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0160
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0160
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0165
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0165
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0170
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0170
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0175
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0175
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0180
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0180
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0180
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0185
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0185
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0185
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0190
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0190
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0190
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0195
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0195
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0200
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0200
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0200
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0205
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0205
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0205
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0210
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0210
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0210
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0215
http://refhub.elsevier.com/S0927-0256(20)30281-0/h0215

	The effects of introducing elasticity using different interpolation schemes to the grand potential phase field model
	Introduction
	Grand potential model coupled with elasticity
	Evaluation of the excess elastic energy
	System description
	Configurations
	Numerical method
	Analytical solutions
	Simulations results and discussion

	Influence on microstructure evolution
	Model description
	Numerical method
	Results and discussion

	Additional note on a limitation of the grand potential model
	Conclusion
	Data availability
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References




